Гидроэнергетические ресурсы мира и их использование. Смотреть страницы где упоминается термин гидроэнергетические ресурсы Гидроэнергетические ресурсы и их характеристика

Гидравлическая энергия является возобновляемым источником энергии. Запасы поверхностного стока по территории России распределены неравномерно, что весьма неблагоприятно для народного хозяйства, в том числе и для энергетики. Более 80 % речного стока российских рек приходится на еще мало освоенные территории бассейнов Северного Ледовитого и Тихого океанов.

Особенностью стока реки является его неравномерное распределение как по годам, так и в течение года.

Многолетняя неравномерность стока неблагоприятна для всех отраслей народного хозяйства и прежде всего для энергетики. Различают: многоводные, средневодные и маловодные годы. В маловодные годы обычно значительно снижается выработка энергии на гидроэлектростанциях.

Неравномерность стока в течение года неблагоприятна для энергетики. Для большинства рек России маловодный период наблюдается зимой, когда потребность в электроэнергии наибольшая. Механическая энергия речного стока (или гидравлическая энергия) может быть преобразована в электрическую посредством гидротурбин и генераторов. В естественных условиях энергия водотока расходуется на преодоление внутреннего сопротивления движения воды, сопротивления на трение на стенках русла, размыв дна, берегов и т.п.

Гидроэнергетика использует возобновимые источники энергии, что позволяет экономить минеральное топливо. На гидроэлектростанциях (ГЭС) энергия текущей воды преобразуется в электрическую энергию. Основная часть ГЭС - плотина, создающая разницу уровней воды и обеспечивающая ее падение на лопасти генерирующих электрический ток турбин. К преимуществам ГЭС следует отнести высокий кпд - 92-94% (для сравнения у АЭС и ТЭС - около 33%), экономичность, простоту управления. Гидроэлектростанцию обслуживает сравнительно немногочисленный персонал: на 1 МВт мощности здесь занято 0,25 чел. (на ТЭС - 1,26 чел., на АЭС - 1,05 чел.). ГЭС наиболее маневренны при изменении нагрузки выработки электроэнергии, поэтому этот тип энергоустановок имеет важнейшее значение для пиковых режимов работы энергосистем, когда возникает необходимость в резервных объемах электроэнергии. ГЭС имеют большие сроки строительства - 15-20 лет (АЭС и ТЭС - 3-4 года) и требуют на этом этапе больших капиталовложений, но все минусы компенсируются длительными сроками эксплуатации (до 100 лет и больше) при относительной дешевизне поддерживающего обслуживания и низкой себестоимости выработанной электроэнергии.

Любая ГЭС - комплексное гидротехническое сооружение: она не только вырабатывает электроэнергию, но и регулирует сток реки, плотина используется для транспортных связей между берегами. В нашей стране при крупных ГЭС часто создавались значительные промышленные центры, использовавшие мощности строительной индустрии, высвободившиеся после сооружения плотины, и ориентированные на дешевую электроэнергию гидроустановок. Таковы Тольятти при Волжской ГЭС им. Ленина, Набережные Челны при Нижнекамской ГЭС, Братск при Братской ГЭС, Балаково при Саратовской ГЭС, Новочебоксарск при Чебоксарской ГЭС, Чайковский при Воткинской ГЭС, Волжский при Волжской ГЭС им. XXII съезда КПСС. Похожим образом создавался промышленный центр Саяногорск в Хакасии в относительном удалении от Саяно-Шушенской ГЭС.

Гидроэлектростанция. Фото: Jean-Etienne Minh-Duy Poirrier

Бесспорные преимущества ГЭС несколько приуменьшает относительная «капризность» этого типа электростанций: для их размещения необходим выгодный створ в речной долине, относительно большое падение воды, сравнительно равномерный сток по сезонам года, создание водохранилища и затопление прирусловых территорий, которые прежде использовались в хозяйственной деятельности и для расселения людей. Более полно гидроэнергетические ресурсы используют серии ГЭС на одной реке - каскады. Наиболее мощные каскады ГЭС в России построены на Енисее, Ангаре, Волге, Каме. По числу отдельных ГЭС на протяжении небольшого участка русла в России нет равных каскадам Кольского полуострова: Нивскому (6 ГЭС общей установленной мощностью 578 МВт), Пазскому (5 ГЭС, 188 МВт), Серебрянскому (4 ГЭС, 512 МВт).

Гидроэнергетический потенциал рек России оценивается величиной 852 млрд. кВт ч в год. Это так называемый экономический потенциал, пригодный для промышленного использования. По величине гидроэнергопотенциала Россия занимает 2-е место в мире, уступая только Китаю.

Распределение гидроэнергоресурсов по территории страны крайне неравномерно. На Европейскую часть России приходится 25 %, на Сибирь 40% и 35% на Дальний Восток. В наиболее промышленно развитой части страны – Центре Европейской части, гидроэнергопотенциал использован практически полностью. Возможности развития гидроэнергетики в Европейской части имеются на Северо-Западе и Северном Кавказе. В целом по Европейской части России использование гидроэнергопотенциала составляет 46%.

Необходимо отметить, что в наиболее развитых странах мира процент использования гидроэнергетических ресурсов, как правило, существенно выше. Если же такие страны располагают существенным гидропотенциалом, то они практически полностью обеспечивают себя электроэнергией за счет ГЭС – Норвегия, Швейцария, Австрия и др. Особенно показателен пример Норвегии. Она является абсолютным мировым лидером по производству электроэнергии на душу населения – 24 000 кВт час в год, 99,6 % из которых производится на ГЭС. Именно эти страны обладают наивысшими рейтингам качества жизни.

В России наиболее богатым гидроэнергоресурсами регионом является Сибирь. Здесь протекают крупнейшие реки России – Енисей, Ангара Лена и др. На сегодня гидроэнергоресурсы Сибири использованы на 20%. Здесь построены крупнейшие ГЭС России – Красноярская, Братская, Усть-Илимская, Саяно-Шушенская. На базе этих ГЭС возник мощный промышленно развитый регион, основу которого составили предприятия с энергоемкими производствами: металлургические, химические, лесоперерабатывающие и др.

Наименее освоены гидроэнергоресурсы Дальневосточного региона. Из крупных ГЭС здесь действуют только Зейская и Колымская ГЭС, заканчивается строительство Бурейской. Потенциал региона освоен только примерно на 4 %.

Крупнейшие гидроэлектростанции России

Ранг Название Размещение Установленная мощность, МВт Река Год ввода в эксплуатацию Энерго-
система
1 Саяно-Шушенская ГЭС пос. Черёмушки,
Респ. Хакасия
6 400 Енисей 1978 ОЭС Сибири
2 Kрасноярская ГЭС г. Дивногорск,
Kрасноярский край
6 000 Енисей 1971 ОЭС Сибири
3 Братская ГЭС г. Братск,
Иркутская обл.
4 500 Ангара 1967 ОЭС Сибири
4 Усть-Илимская ГЭС г. Усть-Илимск,
Иркутская обл.
3 840 Ангара 1980 ОЭС Сибири
5 Волжская ГЭС им. XXII съезда KПСС г. Волгоград,
Волгоградская обл.
2 541 Волга 1962 ОЭС Центра
6 Волжская ГЭС им. В.И. Ленина г. Тольятти,
Самарская обл.
2 300 Волга 1957 ОЭС Средней Волги
7 Чебоксарская ГЭС г. Новочебоксарск,
Респ. Чувашия
1 370 Волга 1980 ОЭС Средней Волги
8 Саратовская ГЭС г. Балаково,
Саратовская обл.
1 360 Волга 1970 ОЭС Средней Волги
9 Зейская ГЭС г. Зея,
Амурская обл.
1 330 Зея 1980 ОЭС Востока
10 Нижнекамская ГЭС г. Набережные Челны,
Респ. Татария
1 205 Kама 1979 ОЭС Средней Волги
11 Загорская ГАЭС пос. Богородское,
Московская обл.
1 200 Kунья 1987 ОЭС Центра
12 Воткинская ГЭС г. Чайковский,
Пермская обл.
1 020 Kама 1963 ОЭС Урала
13 Чиркейская ГЭС пос. Дубки,
Респ. Дагестан
1 000 Сулак 1976 ОЭС Северного Kавказа

Братская ГЭС в России

Гидроэнергетические ресурсы на Земле оцениваются величиной 33000 ТВт ч в год, но по техническим и экономическим соображениям из всех запасов доступны от 4 до 25%. Общий гидропотенциал рек России исчисляется в 4000 млн. МВт ч (450 тыс. МВт среднегодовой установленной мощности), что составляет приблизительно 10-12% от мирового.

В табл. 1.13 приводятся данные о гидроресурсах в различных странах мира.

Известно, что первоисточником гидроэнергии является солнечная энергия. Вода океанов и морей, испарясь под действием солнечной радиации, конденсируется в высоких слоях атмосферы в виде капелек, собирающихся в облака. Вода облаков падает в виде дождя в моря, океаны и на сушу или образует мощный снеговой покров гор. Дождевая вода дает начало рекам, питающимся подземными источниками. Круговорот воды в природе происходит под влиянием солнечной радиации , благодаря которой появляются начальные процессы круговорота - испарение воды и движение облаков. Таким образом, кинетическая энергия движущейся в реках воды есть, образно говоря, освобожденная энергия Солнца.

Гидроресурсы различных стран

Таблица 1.13

Страна

Мощность, ГВт

Страна

Мощность, ГВт

(обеспеченность - 50%)

минималь

расходах

воды

(обеспеченность - 95%)

при среднегодовых расходах воды

(обеспеченность - 50%)

минималь

расходах

воды

(обеспеченность - 95%)

Россия

Франция

Италия

Канада

Швейцария

Япония

Испания

Норвегия

Германия

Швеция

Англия

В отличие от невозобновляемой химической энергии, запасенной в органическом топливе, кинетическая энергия движущейся в реках воды возобновляема - на гидроэлектростанциях она превращается в электрическую энергию.

Свойство возобновляемости гидроэнергии является важным преимуществом ГЭС. К их преимуществам относятся также:

  • 1) небольшая стоимость эксплуатации и отсюда низкая себестоимость энергии, вырабатываемой на ГЭС;
  • 2) большая надежность работы, объясняемая отсутствием высоких температур и давлений в гидротурбинах и относительно невысокими скоростями вращения этих турбин и гидрогенераторов;
  • 3) высокая маневренность, определяемая небольшим временем, требующимся для включения в работу, набора нагрузки, а также останова ГЭС (это время составляет всего несколько минут).

Строительство ГЭС во многих случаях решает также задачи снабжения водой городов, промышленности и сельского хозяйства (орошение).

Работа ГЭС, в отличие от ТЭС, не ухудшает санитарного состояния воздушной среды и качество воды в водоемах. Недостатками ГЭС являются их более высокая стоимость и большой срок строительства в сравнении с ТЭС. Однако эти недостатки обычно компенсируются преимуществами ГЭС.

Энергия приливов и отливов. К использованию этих видов энергии в последнее время проявляется значительный интерес.

Наибольшей высоты приливы достигают в некоторых заливах и окраинных морях Атлантического океана - 14-18 м. В Тихом океане у побережья России максимальные приливы бывают в Пенжинской губе Охотского моря - 12,9 м. У берегов Кольского полуострова в Баренцевом море они не превышают 7 м, но в Белом море, в Мензенской губе, достигают 10 м. В окраинных морях Северного Ледовитого океана приливы не велики - 0,2-0,3 м, редко 0,5 м. Во внутренних морях - Средиземном, Балтийском, Черном - приливы почти незаметны.

Доступный для использования потенциал приливов в европейской части России оценивается в 40 млн. МВт (16 тыс. МВт среднегодовой установленной мощности), а на Дальнем Востоке - в 170 млн. МВт.

Течения и волнения в Мировом океане велики и чрезвычайно разнообразны. Скорости течений достигают высоких значений, например, у Гольфстрима - 2,57 м/с (9,2 км/ч) при глубине 700 м и ширине 30 км. Правда, чаще они не превышают нескольких сантиметров в секунду.

Максимальные параметры волнений: высота волн -15м, длина - 800 м, скорость - 38 м/с, период - 23 с. В толще вод возникают и внутренние волны, обнаруженные впервые Ф. Нансеном в 1902 г., амплитуда их - от 35 до 200 м. При амплитуде же в 1 м, ширине 5 м и скорости распространения 10 м/с энергия волны достигает 267 кВт. Отсюда видно, как велики запасы энергии в этих источниках энергии.

В настоящее время сооружено несколько мощных электростанций, использующих энергию приливов. Однако большая стоимость сооружения таких станций, трудности, связанные с неравномерностью их работы (пульсирующий характер выдачи мощности), не позволяют пока считать приливные станции достаточно эффективными, в связи с чем развитие их идет медленно. Общая мощность приливных волн оценивается в 2-3 ТВт, однако мощность приливов в местах, удобных для ее использования, значительно меньше.

Контрольные вопросы

  • 1. Перечислите основные возобновляемые и невозобновляемые энергетические ресурсы.
  • 2. Назовите элементарный состав твердого топлива и виды массы топлива.
  • 3. Что является основной характеристикой любого вида топлива?
  • 4. Что такое условное топливо?
  • 5. Назовите основной принцип получения тепловой энергии на атомных станциях.

Если возобновимые природные богатства , например гидроэнергетические ресурсы, или новые, еще не освоенные сельскохозяйственные земли включаются в экономический оборот сразу же после появления благоприятных рыночных условий для их использования, то владельцы ресурсного потенциала определенно выигрывают как в случае стабилизации, так и еще более значительно при продолжающемся улучшении конъюнктуры. Напротив, проигрыш может быть связан преимущественно лишь с таким скорым, глубоким и продолжительным ее падением, которое резко снизило бы рентабельность эксплуатации естественных средств производства , не позволив окупить затраты на их освоение. Однако подобные инвестиционные риски присущи в различной степени всякой предпринимательской деятельности . Кроме этих рисков, почти не существует иных побудительных мотивов для искусственной консервации возобновимых природных ресурсов , кроме расчетов на то, что сдерживание производства сможет активно стимулировать рост цен и резко повысить норму и массу прибыли от старых действующих предприятий до величины, превосходящей эффект от расширения сбыта новой продукции.  


Еще раньше началось и более активно расширялось участие алжирского государства в сфере использования углеводородного сырья в его переработке и особенно в распределении жидкого и газообразного топлива внутри страны. После начала разработки нефтегазовых ресурсов они очень быстро заняли основное место в энергопотреблении Алжира, со временем свели на нет применение твердого топлива, а также заметно потеснили гидроэнергетические ресурсы. К середине 60-х годов на нефтепродукты и газ приходилось свыше половины использованных конечных энергоносителей, а к началу следующего десятилетия их доля составляла уже от 2/3 до 3А. Причем примерно 70% нефтепродуктов, реализуемых на внутреннем рынке , потреблялось в государственном секторе алжирской экономики .  

Значительными ресурсами гидроэнергии располагают страны Азии, Африки и Латинской Америки . Во многих развивающихся странах потребность в энергии весьма высока. Это определяет их стремление форсировать использование гидроэнергетических ресурсов (АРЕ, Непал, Индия, Судан, Пакистан, Индонезия и др.).  

Ресурсы топлива и энергии социалистических стран растут быстрыми темпами. Объясняется это большими успехами в поисках и разведке различных минерально-сырьевых ресурсов , в исследовании гидроэнергетических ресурсов, развитии науки и техники в области новых источников энергии. Мировая социалистическая система располагает полным комплексом топливно-энергетических ресурсов, огромным энергетическим потенциалом. Суммарные разведанные и прогнозные запасы каменного угля в странах социализма по общепризнанным оценкам превышают в настоящее время 14,5 трлн, т, кроме того, ресурсы бурых углей и лигнитов достигают 3 600 млрд. т. Доля социалистических стран в мировых запасах угля равна 77%. Ресурсы горючих сланцев по ориентировочным подсчетам составляют не менее половины известных мировых запасов, а торфа - более 75%.  

Дальнейшее развитие энергетики в Корейской Народной Демократической Республике , в Демократической Республике Вьетнам обеспечивается крупными запасами угля и значительными гидроэнергетическими ресурсами. Можно предвидеть, что усиление разведочных работ в МНР, в особенности в связи со вступлением МНР в СЭВ, послужит основой для повышения степени обеспеченности страны собственными ресурсами топлива.  

Ресурсы топлива и энергии стран мировой социалистической системы увеличиваются быстрыми темпами. Объясняется это огромными успехами в поисках и разведке различных минерально-сырьевых ресурсов , в исследовании гидроэнергетических ресурсов, развитии науки и техники в области новых источников энергии.  

Огромная роль в развитии энергетической базы отводится рациональному использованию гидроэнергетических ресурсов нашей страны. В. И. Ленин, выдвигая в первые годы Советской власти идею электрификации, указывал на большое значение освоения водных ресурсов в решении этой задачи.  

Серьезные изменения произошли и в японской электроэнергетике. В 1950 г. ее основой были ГЭС. Однако с середины 50-х годов их строительство было перенесено в районы, удаленные от основных центров потребления электроэнергии. Все более острой становилась проблема изыскания территорий, где можно было бы создавать водохранилища. Дальнейшее освоение гидроэнергетических ресурсов было связано с увеличением капитальных затрат не только на сооружение самих ГЭС, но и на передачу электроэнергии до потребителей.  

Гидроэнергетические ресурсы 2. Численность исследователей  

Графики нагрузки отдельных районных энергосистем могут существенно различаться по конфигурации и аналитическим характеристикам. Прежде всего это связано с разной структурой потребителей и климатическими условиями в регионах страны. Также различаются и способы покрытия региональных нагрузок, т.е. структура генерирующих мощностей, что определяется условиями топливоснабжения электростанций и наличием гидроэнергетических ресурсов. В результате совместного действия всех этих факторов в каждом регионе (энергосистеме) формируется своя стоимость энергии.  

Школьное воспитание, семейное воспитание, трудовое воспитание , физическое воспитание рабочая сила , демократические силы, агрессивные силы дальнейшее движение, ускоренное движение, прогрессивное движение, международное движение дальнейший подъем, систематический подъем, экономический подъем климатические условия, при условии, природные условия, решающее условие физический прибор, акустический прибор, электронный прибор, электрический прибор заводской транспорт, внутризаводской транспорт , водный транспорт , воздушный транспорт , подземный транспорт счетная машина, франкировальная машина, электронная машина материальные ресурсы , гидроэнергетические ресурсы, финансовые ресурсы легкая промышленность , тяжелая промышленность, радиоэлектронная промышленность, промышленность стройматериалов профсоюзная конференция, всероссийская конференция, международная конференция , заводская конференция.  

Франция обладает богатыми и разнообразными гидроэнергетическими ресурсами. Однако географически они размещаются неравномерно, в основном - в горных районах, расположенных в южной части страны. Строительство гидростанций привело к появлению энергоемких отраслей промышленности (особенно электрохимической) с постоянным графиком потребления . Впоследствии влияние этих исторических и географических факторов было несколько ослаблено объединением электростанций и сетей и созданием объединенной энергосистемы Север--Юг. Однако некоторые особенности сохраняются и в настоящее время. Они иллюстрируются приведенными ниже графиками, характеризующими режим нагрузки сухого, холодного дня в декабре 1965 г. (рис. 1-4).  

Наличие значительных гидроэнергетических ресурсов делает французскую энергетику вдвойне уязвимой в засушливые годы. Для покрытия максимальных нагрузок необходимо наличие достаточной располагаемой мощности. Но, кроме того, необходимо ограничивать сработку водохранилищ, чтобы они не оказались полностью опорожненными раньше, чем это допустимо, - до конца зимы. В противном случае может иметь место вынужденная остановка гидростанций не из-за их недостаточной мощности, а из-за отсутствия достаточного для их работы количества воды после прохождения максимума нагрузки. Продолжительность критического периода, в течение которого использование гидростанций, имеющих водохранилища, совершенно необходимо, составляет за 5 мес. (с октября по февраль) примерно 1 600 ч ра-  

Наличие (запасы) водных ресурсов изучается статистикой исходя из двух критериев как запасы воды и как запасы гидроэнергетических ресурсов.  

Механическая энергия водного потока может быть превращена в электрическую и образует гидроэнергетические ресурсы. Их потенциальный размер определяется мощностью потоков (количеством протекающей в потоке воды в 1 с) и высотой падения воды. Этот потенциальный размер энергетических ресурсов определяется в расчете на среднегодовой и минимальный стоки и обычно выражается в киловаттах.  

В Европейской части СССР большое значение имеет комплексное использование гидроэнергетических ресурсов рек Волги, Камы и Днепра.  

В горных районах Средней Азии и Кавказа эффективному использованию гидроэнергетических ресурсов способствует значительная водность и большие падения водотоков, позволяющие сооружать гидроузлы с большой выработкой электроэнергии. В предгорных районах имеется возможность эффективного сочетания использования водных ресурсов для энергетики и орошения земель.  

Италия бедна топливными ресурсами и многими видами пром. сырья. Имеются запасы цинка, свинца, серы, ртути, пиритов, бокситов, мрамора. Значительны гидроэнергетические ресурсы. Наиболее развитые отрасли пром-сти машиностроение (автомобилестроение, судостроение, точное машиностроение, электротехника, приборостроение), пищевая, химическая, текстильная, металлургическая. Значительное развитие получили произ-во вычислительной техники, роботов и электронного оборудования. В 1986 г. произведено 23 млн т стали, 12 млн т чугуна, 40 млн т цемента, 192 млрд кВт-ч электроэнергии, 1830 тыс. автомобилей, из них 1650 тыс. легковых, добыто 2,3 млн т нефти, 14 млрд м 3 газа.  

Бутан относится к наименее развитым странам мира . Располагает крупными гидроэнергетическими ресурсами (до 20 тыс. МВт, оценка ООН), значительными полезными ископаемыми , еще не полностью разведанными (известняк, каменный уголь, доломит, гипс, медь, цинк, свинец и др.).  

Основа экономики страны - сел. хоз-во и горнодобывающая пром-сть. Гайана занимает ведущее место в мире по добыче бокситов (в 1987 г. добыто 1,1 млн т). Имеются запасы марганцевой и железной руд, золота, алмазов и др. Гайана обладает значительными гидроэнергетическими ресурсами. Обрабатывающая пром-сть развита слабо, в основном специализируется на переработке пром. сырья и с.-х. продуктов.  

СССР - огромная страна, занимающая территорию площадью 22,4 млн. кв. км расстояния с Востока на Запад 10 тыс. км и с Севера на Юг 5 тыс. км. Природные ресурсы (уголь, нефть, газ, минеральное сырье , лес, гидроэлектрическая энергия, вода и т. п.) нашей страны огромны и разнообразны, но территориально они размещены неравномерно. Резко различны условия залегания многих полезных ископаемых и экономическая эффективность их добычи и использования. От дореволюционной России нам досталось нерациональное размещение производительных сил. Свыше s/4 всей промышленной продукции в 1913 г. производилось в Московском, Петербургском и Ивановском районах страны и на Украине. Вне промышленного развития оставались Восточные районы страны с их исключительно богатыми сырьевыми, топливными и гидроэнергетическими ресурсами. Достаточно сказать, что на долю Урала, Сибири, Дальневосточного края и Средней Азии приходилось только 8,3% промышленной продукции России. А ведь в Восточных районах страны сосредоточено 75% всех имеющихся в СССР запасов угля, до 80% гидроэнергетических ресурсов, 4Д лесных богатств, основные запасы цветных и редких металлов, огромные ресурсы химического сырья, железных руд и строительных материалов, огромные запасы нефти и газа. При этом условия залегания природных ископаемых в Восточных районах страны таковы, что они обеспечивают высокую экономическую эффективность их добычи. Себестоимость угля и гидроэнергии здесь в 2 раза меньше, чем в других районах страны. Добыча угля ведется, как правило, открытым способом, вследствие чего снижаются капиталовложения и резко возрастает производительность труда.  

В статистике водных богатств выделяется статистика водных ресурсов , завершаемая построением водного баланса страны и отдельных территорий статистика гидроэнергетических ресурсов статистика богатств животного и растительного мира морей, океанов рек и других водоемов (изучающая, например, запасы рыбы, морского зверя, различных водорослей) статистика вод, богатых минеральными веществами и тепловой энергией лечебного и технического назначения.  

Важнейшими показателями, характеризующими гидроэнергетические ресурсы, являются площадь бассейна (тыс. км2) число учтенных рек суммарная длина учтенных рек (км) суммарная потенциальная мощность (среднегодовая и минимальная (тыс. кВт)) удельная мощность (кВт/км2).  

Существенное влияние на развитие и размещение промышленности в стране оказывает строительство гидроэлектростанций. В довоенные годы на базе электроэнергии Днепровской гидроэлектростанции имени В. И. Ленина был сооружен комплекс энергоемких промышленных производств алюминия и магния, специальных сталей и ферросплавов. В послевоенные годы началось широкое освоение наиболее эффективных гидроэнергетических ресурсов Сибири. Построенные Иркутская, Красноярская и Братская гидроэлектростанции явились основой для широкого развития промышленности в южной части Восточной Сибири . В Основных направлениях развития народного хозяйства СССР на 1976-1980 годы предусмотрено строительство новых крупных гидро-  

Нет единой методики определения гидроэнергетического потенциала. По рекомендации Европейской экономической комиссии ООН при расчетах гидроэнергетических ресурсов принимаются следующие расчетные коэффициенты теоретический потенциал, определяющий ресурсы гидроэнергии при к. п. д., равном единице технический, учитывающий потери воды и напора экономический, учитывающий возможности использования гидроресурсов. По данным Гидропроекта и Гидроэнергопроекта технически возможный коэффициент использования прогнозных гидроэнергоресурсов в СССР составляет 0,57 и колеблется в диапазоне от 0,4 до 0,76.  

Советское государство, приступая к созданию мощной энергетической базы, располагало крайне скудными данными о действительных ресурсах гидроэнергии в стране. Общая среднегодовая мощность гидроэнергетических ресурсов была определена в 20 млн. кет, что, как теперь известно, в 20 раз меньше реально исчисленных гидроэнергоресурсов.  

Вознесенский А. Н. Гидроэнергетические ресурсы СССР. Энергетика мира. МИРЭК, Вена, 1956.  

Для оценки потенциальных гидроэнергетических ресурсов (без учета потерь при преобразовании водной энергии в электрическую) определяется валовой гидроэнергетический потенциал. Он характеризуется среднемноголетней годовой потенциальной энергией Э по т и среднегодовой потенциальной мощностью N по т .

Годовая потенциальная энергия, исходя из 8760 ч использования в году потенциальной мощности, может определяться по формуле

Э пот = 8760 N пот .

Валовой теоретический гидроэнергетический потенциал рек мира оценивается в 39100 млрд. кВт·ч.

Технический гидроэнергетический потенциал характеризует ту часть водной энергии, которую можно использовать технически.

При определении технического гидроэнергетического потенциала учитываются все потери, связанные с производством электроэнергии, включая невозможность полного использования стока, что вызвано недостаточной емкостью водохранилищ и ограничением мощности ГЭС, в связи с ограниченным использованием верховых и низовых участков рек с малой потенциальной мощностью, потерями на испарение с поверхности водохранилищ и на фильтрацию из водохранилищ, потерями напора и мощности в проточном тракте и энергетическом оборудовании ГЭС.

Экономически эффективный гидроэнергетический потенциал определяет ту часть технического потенциала, которую в настоящее время экономически целесообразно использовать. Следует отметить условность определения экономически эффективного потенциала, так как он базируется на техникоэкономическом сравнении с альтернативными источниками электроэнергии, в качестве которых выступают тепловые электростанции, и не учитывает достаточно полно эффективность комплексного использования водных ресурсов. Кроме того, в связи с ростом стоимости органического топлива, а также увеличением стоимости строительства ТЭС с учетом ужесточения требований по охране окружающей среды и др. можно прогнозировать увеличение в перспективе экономически эффективного потенциала, который будет приближаться к техническому гидроэнергетическому потенциалу.

Таблица 2.1 Данные о гидроэнергетическом потенциале и его использовании в странах, имеющих наибольшие гидроэнергетические ресурсы


Гидроэнергетический потенциал, выработка

Технический, млрд.кВт·ч

Экономически эффективный, млрд.кВт·ч

Мощность, млн. кВт

Выработка

млрд. кВт·ч

% от экономически эффективного

Бразилия

Республика Конго

308,8 (2000 г.)

Таджикистан

Венесуэла

Глобальное потепление климата на Земле, возможность которого обосновывается многими исследованиями, может повлиять на сток рек и гидроэнергетические ресурсы. Так, по приближенной оценке среднемноголетняя выработка ГЭС в России может увеличиться до 12%.

Мировой технический гидроэнергетический потенциал (на уровне 2008 г.) оценивается в 14650 млрд. кВт·ч, а экономически эффективный – в 8770 млрд. кВт·ч. Распределение экономического эффективного потенциала и его использования по континентам на уровне 2000 г. приведено на рис. 2.2.

Несмотря на резкое повышение требований по охране окружающей среды, за 25 лет с 1975 по 2000 гг. мировой объем выработки электроэнергии на ГЭС вырос с 1165 до 2650 млрд. кВт·ч и составил около 19% мирового производства электроэнергии. При этом используется только треть экономически эффективного гидроэнергетического потенциала. Во всем мире установленная мощность ГЭС, находящихся в эксплуатации, в 2000 г. составила 670 млн.кВт, а к 2008 г. достигла 887 млн.кВт, а выработка – 3350 млрд.кВт·ч. Данные о гидроэнергетическом потенциале стран, обладающих наибольшими гидроэнергетическими ресурсами, и его использовании на уровне 2008 г. приведены в таблице 2.1.

Полный объем всех водохранилищ в мире превысил 6 тыс. км 3 (ресурсы речного стока оцениваются в 37 тыс. км 3 ). На средние и большие водохранилища объемом более 100 млн. м 3 приходится свыше 95% суммарного объема всех водохранилищ, причем подавляющее большинство этих водохранилищ имеют ГЭС.

Гидроэнергические ресурсы не беспредельны, и приходит понимание, что они такое же национальное богатство, как нефть, газ, уголь, уран, в отличие от которых являются возобновляемыми ресурсами.

Самые крупные эксплуатируемые ГЭС имеют установленную мощность: Три ущелья (Китай) – 18,2 млн. кВт, Итайпу (Бразилия – Парагвай) – 12,6 (14,0) млн.кВт, Guri (Венесуэла) – 10,3 млн.кВт, Тукуру (Бразилия) – 7,2 млн.кВт, Гренд Кули (США) – 6,5 млн.кВт, Саяно–Шушенская – 6,4 млн.кВт и Красноярская (Россия) – 6 млн.кВт, Черчилл-Фолс – 5,4 млн.кВт и Ла Гранде (Канада) – 5,3 млн.кВт.

Таблица 2.2 Данные о гидроэнергетическом потенциале стран, максимально его использующих (на уровне 2008 г.)


Гидроэнергетический потенциал, выработка, млрд. кВт·ч

Освоение гидроэнергетического потенциала

Технический

Экономически эффективный

Мощность, млн. кВт

Выработка

млрд. кВт·ч

% от экономически эффективного потенциала

Европа

Швейцария

Германия

Финляндия

Азия

Северная и Центральная Америка

Южная Америка

Венесуэла

Парагвай

Австралия и Океания

Австралия

Анализируя мировой опыт развития энергетики, следует отметить, что практически все наиболее развитые страны в первую очередь интенсивно осваивали свои гидроэнергетические ресурсы и достигли высокого уровня их использования (табл. 2.2). Так, гидроэнергетические ресурсы в США использованы на 82%, в Японии – на 90%, в Италии, во Франции, в Швейцарии – на 95–98%.

В Украине экономически эффективный гидроэнергетический потенциал использован на 60%, в России – на 21%.

В мире сохраняется тенденция к постоянному увеличению использования вечно возобновляемых гидроэнергетических ресурсов, особенно в слаборазвитых и развивающихся странах, развитие энергетики в которых идет по пути первоочередного применения именно гидроэнергетических ресурсов. При этом строительство ГЭС в основном перемещается в предгорья и горные районы, где их отрицательное влияние на окружающую среду значительно уменьшается.


«Итайпу» – одна из крупнейших ГЭС мира на реке Парана, за 20 км до г. Фос-ду-Игуасу (Foz do Iguacu) на границе Бразилии и Парагвая. По мощности уступает лишь ГЭС «Три ущелья» (Китай), однако на 2008 год была крупнейшей по выработке электроэнергии.


ГЭС «Три ущелья» – самая большая за всю историю мировой гидроэнергетики. В состав сооружений ГЭС входят: бетонная глухая плотина, здание ГЭС с 26 агрегатами, водосбросная плотина, 2 нитки шлюзов по 5 камер с напором на каждую камеру 25,4 м, судоподъемник. Полная и полезная емкость водохранилища – 39,3 и 22,1 млн. м 3 , его максимальная глубина – 175 м. Установленная мощность ГЭС 18 200 МВт.

Размер: px

Начинать показ со страницы:

Транскрипт

1 ГИДРОЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ. ТИПЫ ГИДРОЭНЕРГЕТИЧЕСКИХ УСТАНОВОК Гидроэнергетические ресурсы это часть водных ресурсов, используемая или могущая быть использованной для производства электроэнергии. В отличие от остальных видов первичных энергоресурсов, предназначенных преимущественно для выработки энергии, гидроэнергетические ресурсы еще используются для промышленного и общественного водоснабжения, развития рыбного хозяйства, ирригации, судоходства и т.д. Характерной особенностью гидроэнергоресурсов является преобразование механической энергии воды в электрическую на ГЭС, которое происходит без промежуточного производства тепла. Энергия рек возобновляема, причем цикличность ее воспроизводства полностью зависит от речного стока, поэтому гидроэнергоресурсы неравномерно распределяются в течение года, кроме того, их величина меняется из года в год. В обобщенном виде гидроэнергоресурсы характеризуются среднемноголетней величиной (как и водные ресурсы). В естественных условиях реки, стекая с возвышенных мест в моря и озера, совершают огромную работу, а следовательно, и обладают большим запасом энергии. В естественных условиях эта энергия пропадает, расходуясь на преодоление различных видов сопротивлений при движении воды, и внешне работа потока проявляется в размывах русла, переносе по дну частиц песка, камней и т.п. Для использования энергии воды необходимо иметь ее сосредоточенное падение. В естественных условиях такое падение называется водопадом и встречается достаточно редко. Различают общий энергетический (или валовой) гидропотенциал речного стока по отношению к уровню морей, технический возможное использование гидроэнергетического потенциала на современном уровне развития техники и экономический экономически целесообразный для реализации на гидроэлектростанциях при существующих ценах на топливо.

2 Общий гидропотенциал рек России исчисляется 4000 млн МВт ч (450 тыс. МВт среднегодовой установленной мощности), что составляет примерно % от мирового. Россия располагает наибольшим экономическим потенциалом (852 млрд квт ч). ТИПЫ ГИДРОЭНЕРГЕТИЧЕСКИХ УСТАНОВОК Гидроэнергетические установки (ГЭУ) это совокупность гидротехнических сооружений, энергетического и механического оборудования, преобразующих механическую энергию водного потока в электрическую энергию или, наоборот, электрическую энергию в механическую энергию воды, при этом механическую энергию воды обычно называют гидравлической энергией. ГЭУ подразделяются на: Гидроэлектростанции (ГЭС); насосные станции (НС); гидроаккумулирующие электростанции (ГАЭС); приливные электростанции ПЭС). Гидроэлектростанции Гидроэлектростанция (ГЭС) это комплекс сооружений и оборудования, посредством которых энергия водотока преобразуется в электроэнергию. В состав ГЭС входят гидротехнические сооружения, обеспечивающие необходимую концентрацию водного потока и создание напора, и энергетическое оборудование, преобразующее энергию движущейся под напором воды в электрическую энергию. Водное пространство перед подпорными сооружениями, например перед плотиной, имеющее более высокий уровень, называется верхним бьефом (ВБ). Водное пространство за плотиной, за зданием станции и т.д. имеющее более низкие отметки уровня, называется нижним бьефом (НБ).

3 Отметки уровня обозначается знаком или с соответствующим числом, которое показывает высоту над уровнем моря (абсолютная отметка) или над какой-либо другой плоскостью сравнения (условная отметка). На ГЭС вода под действием силы тяжести движется из верхнего бьефа в нижний бьеф и вращает рабочее колесо турбины, на одном валу с которым находится ротор генератора электрического тока. Иногда при сравнительно небольшой мощности генератора применяют промежуточную передачу для увеличения числа оборотов и уменьшения веса генератора. Турбина и генератор вместе образуют агрегат или точнее гидроагрегат. В турбине гидравлическая энергия превращается в механическую энергию вращения ее рабочего колеса вместе с ротором генератора, а в генераторе происходит преобразование механической энергии в электрическую. По установленной мощности ГЭС подразделяют на: мощные 250 МВт и выше; средние до 25 МВт; малые до 50 МВт. Мощность ГЭС зависит от напора, расхода воды, используемого в гидротурбинах и кпд гидроагрегата. В России по максимально используемому напору ГЭС делятся на: высоконапорные более 60 м; средненапорные от 25 до 60 м; низконапорные от 3 до 25 м. На равнинных реках напоры редко превышают 100 м, а в горных условиях посредством плотины можно создавать напоры до 300 м. Насосные станции Насосные станции (НС) это комплекс гидротехнических сооружений и оборудования, обеспечивающих забор воды из источников и транспортировку

4 ее с помощью насосных агрегатов к напорному бассейну или месту потребления. Насосные станции имеют большое распространение в системах коммунально-бытового и промышленного водоснабжения и в системах водоснабжения тепловых электрических станций; в ирригационных системах, для подачи воды на поля, расположенные на высоких отметках или в отдаленных районах; на судоходных каналах, пересекающих высокие водоразделы, и т.п. Гидроаккумулирующие электростанции Гидроаккумулирующей электростанцией или же ее еще называют насосноаккумулирующая электростанция это ГЭС, предназначенная для перераспределения во времени энергии и мощности в энергосистеме. В часы пиковых (максимальных) нагрузок она работает как ГЭС вырабатывает и выдает электроэнергию в энергосистему. В часы понижения нагрузок ГАЭС работает как насосная станция за счет потребляемой из энергосистемы электроэнергии она перекачивает воду из нижнего бьефа в верхний, создавая запасы гидроэнергии. Для нормальной работы ГАЭС разница высот между верхним и нижним бьефами должна быть не менее 5 м. Таким образом, за счет разности тарифов ГАЭС потребляет дешевую электроэнергию, а вырабатывает более дорогую в период максимальных нагрузок, тем самым существенно улучшая технические условия работы тепловых электростанций и позволяя уменьшить их удельный расход топлива на 1 квт ч выработки электрической энергии. Существуют ГАЭС с суточным, недельным и сезонным аккумулированием энергии. На Украине работает Киевская ГАЭС мощностью 225 МВт, а в России Кубанская ГАЭС, Сергиево-Пасадская ГАЭС мощностью 1200 МВт.

5 Приливные электростанции Приливные электростанции (ПЭС) это особый вид гидроэлектростанций, использующий энергию приливов и отливов (кинетическую энергию вращения Земли). Преимущество приливов и отливов, по сравнению с другими источниками возобновляемой энергии, заключается в том, что они происходят регулярно и поддаются исчислению. ПЭС строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. На некоторых морских побережьях приливные колебания (амплитуда прилива) достигают значительной величины, 8 10 м. Для экономической эксплуатации ПЭС этот перепад должен составлять не менее 5 м. Наибольшая величина приливных колебаний 19,6 м наблюдается в заливе Фанди (Канада). Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, работающие как в режиме генератора, так и в режиме насоса. Во время прилива происходит накопление воды в водохранилище, а во время отлива сброс. Прежде чем попасть в водохранилище или из водохранилища обратно в залив, вода проходит по турбинам, таким образом электроэнергия вырабатывается как при самом высоком, так и самом низком уровне воды. Первая и в настоящее время самая мощная ПЭС была построена на северозападе Франции в устье реки Ранс (залив Сейнт-Мало). Ее мощность составляет 240 МВт. В России с 1968 г. на побережье Баренцева моря около Мурманска построена оригинальная опытная Кислогубская ПЭС мощностью 0,4 МВт. В настоящее время действуют ПЭС в Канаде (20 МВт), Китае (10 МВт) и некоторых других странах.


Тема 3. Устройство и функционирование современной ГЭС. Общие положения. Гидроэлектрические станции это высокоэффективные источники электроэнергии. В большинстве случаев гидроэлектростанции представляют

А к т у а л ь н ы е п р о б л е м ы э н е р г е т и к и 2017 310 УДК 621.3 Основные виды гидроэлектростанций Паланевич А.П., Комякевич Н.А. Научный руководитель к.т.н., доцент КОНСТАНТИНОВА С.В. В связи

Тема 5. Эффективность использования гидроэнергетических ресурсов. Гидроэнергетическими ресурсами, которые могут быть использованы для получения механической или электрической энергии, считаются: - гидроэнергия

НЕТРАДИЦИОННЫЕ И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ Сухоцкий Альберт Борисович Особенности использования и потенциал гидроэнергетических ресурсов Республики Беларусь. Конструкция ГЭС. Режимы работы и принципиальные

Выполнила: Ученица 11 класса Б Тутарищева Аминат Учитель: Клещева Ф.А Производство, передача и использование электрической энергии Генерация электроэнергии производство электроэнергии посредством преобразования

Работа ОАО «НИИЭС» в области возобновляемых источников энергии Докладчик: вед. инженер НТЦ ПЭ и ВИЭ Городничев Р.М. Направления работ Приливная гидроэнергетика Малая гидроэнергетика Волновая энергетика

ФГБУ «Канал имени Москвы» крупнейший генератор «зеленой» энергии в Московской агломерации Докладчик: Маркин В.В., заместитель руководителя по инвестициям и развитию ФГБУ «Канал имени Москвы» 1 ФГБУ «Канал

REENFOR-2013 КРУГЛЫЙ СТОЛ ТП «МАЛАЯ РАСПРЕДЕЛЕННАЯ ЭНЕРГЕТИКА» (КС 2) Современные технические решения практической реализации автономных электроэнергетических систем распределенной энергетики на базе ВИЭ

Акционерное общество «Научноисследовательский институт энергетических сооружений» (АО «НИИЭС») Мини-ГЭС на базе энергоблоков контейнерного исполнения с ортогональной турбиной Москва, 2016 г. Назначение

МАЛЫЕ ГИДРОЭЛЕКТРОСТАНЦИИ. ГИДРОТУРБОАГРЕГАТЫ Турбиной называется устройство, служащее для преобразования энергии падающей жидкости в механическую энергию. Они бывают двух типов: активные, рабочее колесо

Филиал ОАО «РусГидро» - «Северо-Осетинский филиал» Принцип работы и устройство ГЭС Главный инженер Северо-Осетинского филиала ОАО «РусГидро» Зангиев Казбек Захарович Типы ГЭС Русловые Плотинные Деривационные

УДК 62-82 ГИДРОПРИВОД СВОБОДНОПОТОЧНОЙ МИНИ ГЭС Земсков Е.А., Сибирскй федеральный университет Проблему электроснабжения маломощных потребителей можно достаточно экономично решить с помощью электростанций

Приходько Е.С. Гидроэлектростанция // Академия педагогических идей «Новация». 2018. 5 (май). АРТ 167-эл. 0,2 п. л. URL: http://akademnova.ru/page/875548 РУБРИКА: ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ УДК 620 Приходько

Постановление Правительства Республики Таджикистан Об утверждении Правил пользования водными объектами для нужд гидроэнергетики г. Душанбе, 4 марта 2003 г. 95 Во исполнение статьи 83 Водного кодекса Республики

Чистая энергия Зеленчукская ГЭС-ГАЭС Филиал ОАО «РусГидро»- «Карачаево-Черкесский филиал» 1 п. Правокубанский, 2014 г. 2 ЗЕЛЕНЧУКСКАЯ ГЭС- ГАЭС Идея трансформации Зеленчукской ГЭС в ГЭС- ГАЭС сформировалась

Национальный исследовательский Томский политехнический университет Энергетический институт Кафедра: ЭЛЕКТРОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ Дисциплина: ИНТЕГРИРОВАНИЕ В СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ УСТАНОВОК

КОМПЛЕКСНОЕ ИСПОЛЬЗОВАНИЕ ВОДНЫХ РЕСУРСОВ Водные ресурсы включают в себя воды рек, озер, водохранилищ, подземные воды определенных территорий, используемые или доступные к использованию для различных целей

Обзор предлагаемых вариантов модернизации систем водоканалов Российской Федерации. На перекачку чистых и сточных вод в России расходуется 12-13 млрд. КВт*ч электроэнергии. Стоимость электроэнергии в общей

ЛЕКЦИЯ 11 Геоэкологические проблемы гидросферы План лекции 1. Геоэкологические особенности гидросферы. 2. Антропогенное воздействие на гидросферу. 3. Геоэкологические аспекты использования природных ресурсов

Справка Краткое описание Филиала ОАО «РусГидро» - «Волжская ГЭС» Содержание: Ключевые факторы исторические, производственные, финансовые. Информация о режиме работы, характере и средней загрузке электростанции.

5 ВВЕДЕНИЕ Функция и место парового котла в тепловой схеме ТЭС Электрическая станция представляет собой промышленное предприятие для выработки электрической энергии. Основное количество электрической энергии

Перспективные технологии и технические решения в области гидроэнергетики Руководитель дирекции инновационного развития ОАО «РусГидро», Член управляющего комитета, координатор технологической платформы

Малые ГЭС Докладчик: Заместитель генерального директора ОАО «УК ГидроОГК» К.Е.Фролов г. Москва сентябрь 2014 г. Преимущества и недостатки малых ГЭС Преимущества Работают по водотоку, не имеют водохранилищ

Международный Конгресс ДНИ ЧИСТОЙ ЭНЕРГИИ В САНКТ-ПЕТЕРБУРГЕ Опыт проектирования приливных электростанций на Северо-Западе России 15-16 апреля 2010 Генеральный директор ОАО «Малая Мезенская ПЭС» Савченков

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 8 г. Одинцово Тема урока: «Альтернативные источники энергии» Разработала: Кашолкина Е.Н., учитель географии МБОУ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТРЕФЕРАТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения физики, биологии и инженерных 1. Кафедра технологий 13.03.02 Электроэнергетика и электротехника

УДК 621.31 ВЫБОР ТУРБИН МАЛЫХ ГИДРОЭЛЕКТРОСТАНЦИЙ НА ОСНОВЕ АНАЛИЗА ПАРАМЕТРОВ ВОДОТОКА Р.О. Архипов, студент, [email protected] М.С. Харитонов, канд. техн. наук, старший преподаватель, [email protected]

РусГидро Зарамагские ГЭС: ознакомительная поездка для аналитиков и инвесторов Август 2018 года Зарамагские ГЭС: основные сведения Схема основных объектов каскада Зарамагских ГЭС Расположение: участок р.

Составитель: С. В. Артемчук, доцент кафедры энергоэффективные технологии Учреждения образования Международный государственный экологический университет им. А.Д. Сахарова, кандидат технических наук. Учебная

УО «Молодечненский государственный колледж» Воспитательный час «Беречь энергию беречь природу. Альтернативные источники энергии» Подготовила: преподаватель Шапель Татьяна Петровна Молодечно, 2017 Тема:

Особенности энергосбережения современного Таджикистана Таджикистан Таджикистан расположен в предгорьях Памира играничит с Узбекистаном и Киргизией на западе исевере, скитаемнавостоке, сафганистаном наюге.

Министерство энергетики Республики Беларусь Состояние и перспективы развития электроэнергетической сферы Республики Беларусь Минск 2017 г. Всего: Установленная мощность объединённой энергосистемы Беларуси

Всегда в движении! Внедрение альтернативных источников электроэнергии, применение мини ГЭС на месторождении алмазов им. В. Гриба Дмитрий Едакин, ведущий инженер отдела водопонижающего контура и карьерного

Вода как ресурс НАУКИ О ЗЕМЛЕ ЗЕМНЫЕ РЕСУРСЫ ВОДА КАК РЕСУРС Глава 1: Гидроэнергия: Плотины Откуда вода берет свою энергию? Гидроэнергия это электричество, вырабатываемое из энергии движения воды. Выработка

Фолькер Куашнинг Системы возобновляемых источников энергии Технология - Расчеты - Моделирование Учебник ИЗДАТЕЛЬСТВО ^ОНАЫТ Астана-2013 с Содержание 1. Энергия и защита климата Г.Г. 1.1. Понятие «энергия»

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ ЕЭС РОССИИ ТИПОВАЯ ПРОГРАММА ПРОВЕДЕНИЯ ЭНЕРГЕТИЧЕСКИХ ОБСЛЕДОВАНИЙ ГИДРОЭЛЕКТРОСТАНЦИЙ РД 153-34.2-09.165-00 УДК 621.311 Вводится в действие

Микро гидроэлектростанции Торопов Михаил, к.т.н., доцент кафедры НВИЭ КРСУ, ЦРВИЭЭ Тренинг Центра развития ВИЭ и энергоэффективности Бишкек, 27-30 апреля 2013 ЦРВИЭЭ, www.creeed.net, 2013 Содержание Энергия

МИНИСТЕРСТВО ЭКОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ УКРАИНЫ MINISTRY OF ENVIRONMENT AND NATURAL RESOURCES OF UKRAINE Geneva 03. 06. 2014 ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ГИДРОЭНЕРГЕТИКИ В УКРАИНЕ И ПУТИ ИХ РЕШЕНИЯ По запасам

АЗИАТСКАЯ СУПЕРСЕТЬ и МОНГОЛИЯ С.Батхуяг д.т.н., профессор Монгольского государственного университета науки и технологии Создание этой суперсети в первую очередь обуславливаются следующими объективными

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «Канал имени Москвы» Инвестиционный потенциал зеленой генерации на Канале имени Москвы Докладчик: Маркин В.В. Инженерная инфраструктура как платформа экономического

Международная конференция ИО РАН, Москва «Многофазные системы», 16-18 июня 2010 года Возобновляемые энергетические ресурсы океана В.А.Акуличев Тихоокеанский океанологический институт имени В.И.Ильичева

Средняя общеобразовательная школа с углубленным изучением иностранного языка при Посольстве России в Великобритании Способы получения электроэнергии Проект по физике: Руководители проекта: Журба Ярослав,

Источники энергий используемые человеком для еѐ производства Гмырин Денис Мишуков Евгений Ветряная энергия В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в

РЕГУЛИРОВАНИЕ И РАСПРЕДЕЛЕНИЕ ИНДИВИДУАЛЬНОГО, АВ- ТОНОМНОГО ЭНЕРГОПОТРЕБЛЕНИЯ ОТ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ Ефимов Н.Н., Паршуков В.И., Папин В.В., Янченко И.В., Машков А.В., Безуглов Р.В., Клинников

116 Учитель географии Н. С. Супонина УРОК ПО ГЕОГРАФИИ В 9-А КЛАССЕ ПО ТЕМЕ: «ЭЛЕКТРОЭНЕРГЕТИКА РОССИИ» Цели урока: Продолжить формирование представлений о межотраслевых комплексах. Познакомить учащихся

Министерство энергетики и промышленности Республики Таджикистан «Вопросы укрепления энергобезопасности и рационального использования энергоресурсов в странах Северной и Центральной Азии, взгляд из Республики

Аргументы в пользу их развития возобновляемой энергетики: завоевание мировых рынков новых техники и технологий; сохранение запасов углеводородов для неэнергетических секторов экономики; диверсификация

Нетрадиционные и возобновляемые источники энергии Информация о дисциплине Лекции 8 часов Практические занятия 6 часов Лабораторные работы 4 часов Форма отчетности экзамен Литература Твайделл Дж., Уэйр

1. СОСТОЯНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ НА БАЙКАЛЬСКОЙ ПРИРОДНОЙ ТЕРРИТОРИИ 1.1. Природные объекты 1.1.1. Озеро Байкал 1.1.1.1. Уровень озера (ТОВР по Иркутской области Енисейского БВУ Росводресурсов; Сибирский

Вступительные вопросы для поступающих на магистратуру по специальности 6М071800 Электроэнергетика 1. Электрические цепи: элементы, схемы, законы, классификация. 2. Электромагнитные процессы и режимы электрических

Список гидроэлектростанций Казахстана Название ГЭС Бухтарминская ГЭС 675 2 600 Шульбинская ГЭС 702 1 660 Действующие ГЭС построена по плотинному типу. Состав сооружений ГЭС: правобережная бетонная плотина

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР ЭНЕРГЕТИКА И ЭЛЕКТРИФИКАЦИЯ НАРОДНОГО ХОЗЯЙСТВА. ОСНОВНЫЕ ПОНЯТИЯ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ГОСТ 19431-74 Издание официальное ГОСУДАРСТВЕННЫЙ КОМИТЕТ СТАНДАРТОВ СОВЕТА МИНИСТРОВ

УПРАВЛЯЕМАЯ САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ ДНЕВНОЙ ФОРМЫ ОБУЧЕНИЯ 5.1. Методические рекомендации по выполнению работ Управляемая самостоятельная работа состоит из двух разделов: по темам лекций и по

13. Использование энергии приливов и морских течений 13.1. Общие сведения об использовании энергии приливов Приливные колебания уровня в огромных океанах планеты вполне предсказуемы. Основные периоды этих

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ СФЕРЫ ОБСЛУЖИВАНИЯ И ПРЕДПРИНИМАТЕЛЬСТВА (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО

УДК 627.8.09 АНАЛИЗ ВАРИАНТОВ РАЗМЕЩЕНИЯ ГИДРОАККУМУРИЮУЩЕЙ ЭЛЕКТРОСТАНЦИИ В КАЛИНИНГРАДСКОЙ ОБЛАСТИ А.М. Москалюк, студент, email: [email protected] ФГБОУ ВО «Калининградский государственный технический

ПРОЕКТЫ В ОБЛАСТИ ИСПОЛЬЗОВАНИЯ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ 15 ноября 2012 Факторы развития ВИЭ в мире верны и для РФ ФАКТОР Примеры стран 2 Восприятие ВИЭ в РФ момент внедрения В РФ не настал ВИЭ

Перечень действующих стандартов 1 Гидроэлектростанции. Методики оценки технического состояния основного оборудования гидроэлектростанций 17330282.27.140.001 2006 141/3562 от 06.09.2006 г. 1. 2. С учетом

Группа «РусГидро» один из крупнейших российских энергетических холдингов, объединяющий более 70 объектов возобновляемой энергетики в РФ и за рубежом. Установленная мощность электростанций, входящих в состав

ИСТОРИЯ КОМПАНИИ Президиум Всесоюзного Совета Народного Хозяйства (ВСНХ) СССР специальным постановлением образовал промышленный трест «Донбассводтрест» по централизованному водоснабжению Донецкой, Луганской,

IV МЕЖДУНАРОДНЫЙ КОНГРЕСС REENCON ХХІ Возобновляемая энергетика XXI век: энергетическая и экономическая эффективность 5 6 июня 2018 г. ИСПОЛЬЗОВАНИЕ ОБОРУДОВАНИЯ МГЭС ДЛЯ МАЛЫХ ПРИЛИВНЫХ ЭЛЕКТРОСТАНЦИЙ

Михаил Вадимович Козлов Директор по инновациям и ВИЭ Энергосбережение в ОАО РусГидро ЦЕЛЕВОЕ ВИДЕНИЕ БУДУЩЕГО ОАО РУСГИДРО Решением Совета директоров от 16 июня 2010 утвержден Стратегический план ОАО «РусГидро»

Концепция гидротурбины мощностью 1020МВт для Эвенкийской ГЭС. Демьянов В. А., Пылев И. М., Сотников А. А. ОАО «Силовые машины» филиал «ЛМЗ» Сооружение одной из крупнейших в мире Эвенкийской ГЭС в Сибири

ПРОГРАММА ПРАКТИК Наименование Учебная практика: практика по получению первичных профессиональных умений и навыков Производственная практика: практика по получению профессиональных умений и опыта профессиональной

Лекция 16 Гидрология водохранилищ Назначение и типы водохранилищ. Основные характеристики водохранилищ Водохранилище искусственный водоем, созданный для накопления и дальнейшего использования воды Итайпу

УДК 626.82/.83 А. Л. Кожанов Российский научно-исследовательский институт проблем мелиорации, Новочеркасск, Российская Федерация КОНСТРУКЦИИ ЭНЕРГОЭФФЕКТИВНЫХ ОРОСИТЕЛЬНЫХ СИСТЕМ С НАПОРНЫМ РЕЖИМОМ РАБОТЫ

Федеральное государственное бюджетное образовательное учреждение высшего образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ» «УТВЕРЖДАЮ» Директор ИЭЭ П.А. Бутырин 2016 г. ПРОГРАММА ВСТУПИТЕЛЬНОГО

Тонкопленочные солнечные модули «Хевел» Автономные гибридные энергоустановки на основе солнечных модулей Потенциал внедрения автономных гибридных энергоустановок в России В России более 20 млн. человек